Horário de trabalho:Seg - Sáb 8.00 - 18.00 Ligue para nós: (+86) 317 3736333

Tubos de caldeira de aço carbono JIS G3454 STPG

JIS-G3454-STPG-410-Tubos de aço carbono.jpg

 

A espinha dorsal dos sistemas térmicos: Um mergulho profundo nos tubos de caldeira de aço carbono JIS G3454 STPG

A eficiência e a segurança da engenharia térmica moderna – abrangendo a geração de energia, processamento petroquímico, e aquecimento industrial pesado - dependem fundamentalmente da integridade de seus componentes que contêm pressão. Entre os mais críticos estão os tubos usados ​​para transportar fluidos quentes e vapor. No cenário global de padrões de materiais, o Padrão Industrial Japonês (ELE) G3454 estabelece uma referência rigorosa para Tubos de aço carbono para serviço de pressão, com o STPG designação sendo um material reconhecido mundialmente para aplicações em caldeiras e trocadores de calor. Esta norma não é apenas um conjunto de especificações; é uma estrutura meticulosamente definida que garante a confiabilidade, durabilidade, e segurança de sistemas de tubulação que operam sob condições implacáveis ​​de alta temperatura e alta pressão. Para realmente apreciar o papel dos tubos STPG, é preciso aprofundar as especificidades de sua composição, propriedades mecânicas, precisão de fabricação, e as aplicações exigentes que atende.


Compreendendo a estrutura JIS G3454: Contexto e Escopo

A designação APENAS G3454 se enquadra na categoria mais ampla de Padrões Industriais Japoneses (ELE) relacionado a materiais ferrosos. Especificamente, G3454 é o padrão dedicado a Tubos de aço carbono para serviço de pressão. O “STPG” A nomenclatura dentro desta norma é um acrônimo derivado dos termos japoneses para Steel (S), Tubo (T), Pressão (P), e Geral (G), indicando um tubo de aço de uso geral destinado a aplicações de pressão. Isso é diferente de outros padrões JIS como G3455 (Serviço de alta pressão) ou G3461 (Tubos para caldeiras e trocadores de calor), embora muitas vezes haja sobreposições na aplicação.

A principal função dos tubos fabricados de acordo com as especificações JIS G3454 STPG é o transporte seguro e eficiente de fluidos pressurizados, gases, e vapor em temperaturas elevadas. Sua aplicação normalmente envolve componentes como linhas de vapor, cabeçalhos, economizadores, e várias tubulações em plantas de caldeiras onde a temperatura operacional normalmente não excede US$ 350^circtext{C}$ para $400^circtexto{C}$. Além dessas temperaturas, fenômenos de fluência tornam-se significativos, muitas vezes necessitando do uso de aços de baixa liga (como aços Cr-Mo definidos por JIS G3458 ou equivalentes internacionais). Portanto, as classes STPG são o carro-chefe dos sistemas de tubulação de pressão convencionais que formam o coração de inúmeras operações industriais. As duas notas primárias dentro deste padrão, STPG 370 e STPG 410, são diferenciados por sua resistência à tração mínima especificada, que é a pedra angular dos seus critérios de seleção.

A adesão estrita a esta norma por parte dos fabricantes japoneses e internacionais proporciona uma garantia crucial de qualidade. Estabelece critérios uniformes para composição de materiais, dimensões, tolerâncias, procedimentos de teste, e documentação. Esta intercambialidade e previsibilidade globais são vitais em projetos de engenharia de grande escala, onde materiais de vários fornecedores devem integrar-se perfeitamente em um único, coeso, sistema de alta integridade.


Composição Química: A receita para resistência e soldabilidade

O desempenho fundamental de qualquer material de aço é ditado pela sua composição química precisa. Para tubos STPG, a composição é cuidadosamente controlada para equilibrar dois aspectos críticos, muitas vezes conflitantes, requisitos: alta resistência à tração para suportar pressão interna e excelente soldabilidade para facilidade de fabricação e instalação em redes de tubulação complexas. Como aço carbono, os principais elementos de liga são carbono, silício, manganês, fósforo, e enxofre.

As notas STPG 370 e STPG 410 são fundamentalmente aços de baixo carbono, com o teor de carbono sendo o principal determinante de seu diferencial de resistência. Um menor teor de carbono no STPG 370 aumenta sua ductilidade e soldabilidade, tornando-o adequado para aplicações onde é necessária conformação extensa ou soldagem complexa. Por outro lado, o teor ligeiramente mais elevado de carbono e manganês no STPG 410 contribuir para o aumento da resistência à tração e ao escoamento, permitindo-lhe lidar com pressões operacionais mais altas, embora com uma redução marginal na facilidade de soldagem. Os limites para elementos residuais como o fósforo ($\texto{P}$) e enxofre ($\texto{S}$) são extremamente rigorosos, pois essas impurezas podem levar a problemas como falta de calor durante a laminação e redução da tenacidade, que são riscos inaceitáveis ​​em tubulações de serviço de pressão.

A tabela a seguir detalha a composição química máxima permitida para os dois graus primários, refletindo o controle rigoroso necessário para a integridade da tubulação de pressão (todos os valores estão em porcentagem em massa, máximo, salvo indicação em contrário):

Mesa 1: Composição Química dos Graus JIS G3454 STPG (Massa %)
Elemento STPG 370 STPG 410 Finalidade/Impacto
Carbono (C) $\o 0.25$ $\o 0.30$ Elemento primário de transmissão de força; C mais alto reduz a soldabilidade.
Silício (E) $\o 0.35$ $\o 0.35$ Desoxidante; aumenta ligeiramente a resistência e a dureza.
Manganês (Mn) $0.30 – 0.90$ $0.30 – 1.00$ Aumenta a força, dureza, e resistência ao desgaste; neutraliza os efeitos P e S.
Fósforo (P) $\o 0.040$ $\o 0.040$ Impureza altamente restrita; reduz a ductilidade e a tenacidade (falta de frio).
Enxofre (S) $\o 0.040$ $\o 0.040$ Impureza altamente restrita; promove falta quente e reduz a resistência ao impacto.

*Observação: As especificações reais podem incluir equivalentes de carbono específicos (CE) limites ou restrições de liga mais detalhadas, que são cruciais para a especificação do procedimento de soldagem (WPS). O conteúdo máximo de P e S é muitas vezes mais restrito na prática, mas o padrão especifica $le 0.040\%$.


Propriedades Mecânicas: Definindo desempenho sob estresse

A seleção de um tubo para serviço sob pressão é, em última análise, governada pela sua capacidade de resistir ao estresse exercido pela pressão interna e pelas cargas externas.. As propriedades mecânicas - especificamente **resistência à tração**, **limite de rendimento**, e **alongamento** – são as medidas quantitativas desta resistência. A designação numérica no nome STPG está diretamente ligada à resistência à tração mínima especificada em megapascals ($\texto{MPa}$).

STPG 370 denota um material de tubo com uma resistência à tração mínima de $370 \texto{ MPa}$, enquanto STPG 410 especifica uma resistência à tração mínima de $410 \texto{ MPa}$. A força de rendimento, que é o ponto em que o material começa a se deformar permanentemente, é igualmente crítico para cálculos de projeto para garantir que o tubo opere com segurança dentro do seu limite elástico. Alongamento, uma medida da ductilidade do material, garante que o tubo possa suportar um certo grau de deformação sem fratura frágil – um requisito inegociável para componentes pressurizados.

A tabela a seguir descreve os requisitos mecânicos mínimos especificados por JIS G3454:

Mesa 2: Propriedades mecânicas das classes JIS G3454 STPG (Mínimo)
Propriedade Unidade STPG 370 (Min.) STPG 410 (Min.)
Resistência à tracção ($\sigma_{ts}$) $\texto{N/mm}^2 $ ($\texto{MPa}$) 370 (ou 373) 410 (ou 412)
Força de rendimento ($\sigma_{sim}$) $\texto{N/mm}^2 $ ($\texto{MPa}$) 215 (ou 216) 245
Alongamento (Longitudinal, Não. 4/5 Peça de teste) $\%$ $28 \texto{ min.}$ $24 \texto{ min.}$

*Observação: O requisito de alongamento mínimo varia significativamente com base no tipo de amostra (Não. 4, Não. 5, Não. 11, Não. 12) e se o teste é conduzido longitudinalmente ou transversalmente ao eixo do tubo. Os valores acima representam mínimos comuns para referência de projeto. N/mm$^2$ e MPa são unidades intercambiáveis ​​para tensão.

O engenheiro de projeto depende muito do limite de escoamento mínimo garantido, pois constitui a base para cálculos de espessura de parede de acordo com códigos como ASME B31.1 ou B31.3. Uma maior resistência ao escoamento, conforme oferecido por **STPG 410**, permite uma parede potencialmente mais fina para a mesma pressão de projeto, levando a economia de materiais, peso reduzido, e maior eficiência de transferência de calor – um fator significativo no projeto de trocadores de calor e caldeiras.


Processos de fabricação e tipos de tubos: Costura vs.. Sem costura

A microestrutura e o desempenho mecânico resultante de um tubo STPG estão intrinsecamente ligados ao seu método de fabricação. JIS G3454 cobre **Sem costura** e **Soldado por resistência elétrica (ERW)** processos de tubulação, embora para aplicações críticas de caldeiras de alta pressão e alta temperatura, **tubo sem costura** é esmagadoramente preferido devido à sua integridade e uniformidade superiores.

Tubo sem costura (S)

Os tubos STPG sem costura são produzidos perfurando um tubo quente, tarugo sólido de aço, que é então enrolado e desenhado nas dimensões finais especificadas. A ausência de uma costura de solda significa que não há descontinuidades metalúrgicas ou estruturais inerentes ao corpo do tubo. Isto torna o tubo sem costura a escolha ideal para aplicações onde o tubo estará sujeito às mais altas pressões internas, ciclagem térmica, e flexão ou enrolamento complexo durante a fabricação. A estrutura uniforme dos grãos e a ausência de um caminho potencial de defeito de solda proporcionam o mais alto nível de garantia contra falhas catastróficas, o que é fundamental em um ambiente de caldeira.

Resistência Elétrica Soldada (ERW) Cachimbo (E)

Os tubos ERW STPG são fabricados a partir de uma tira plana (Ovelha) que é moldado a frio em um cilindro e depois soldado ao longo da costura longitudinal aplicando uma corrente elétrica que derrete as bordas. Embora os processos ERW modernos tenham alcançado uma qualidade notável, a presença da costura de solda às vezes pode introduzir potenciais pontos fracos. Para aplicações de serviço de pressão muito exigentes, o projetista pode ser restringido pelo código para usar tubos sem costura, ou a tensão de projeto do tubo ERW pode ser reduzida. No entanto, para algumas aplicações de baixa pressão e não críticas dentro do escopo do serviço de pressão, Os tubos ERW STPG oferecem uma solução mais econômica, especialmente para diâmetros maiores e paredes mais finas, onde a produção contínua se torna tecnicamente desafiadora ou antieconômica.

A norma exige testes não destrutivos rigorosos (END) para todos os tubos soldados, normalmente envolvendo testes de correntes parasitas ou testes ultrassônicos da costura de solda para garantir sua solidez e ausência de falhas. Independentemente do processo, os tubos acabados devem passar por um tratamento térmico final (normalização ou alívio do estresse) para atingir as propriedades mecânicas especificadas e garantir uniformidade microestrutural.


Tolerâncias Dimensionais e Padronização

Além das propriedades dos materiais, a adesão a tolerâncias dimensionais precisas é crítica para o ajuste durante a fabricação e para atender aos requisitos de projeto para espessura de parede, que impacta diretamente a classificação de pressão. JIS G3454 define tolerâncias rigorosas para diâmetro externo (DE) e espessura da parede com base no processo de fabricação do tubo (sem costura com acabamento a quente, sem costura com acabamento a frio, ou ERW).

Dimensões do tubo nesta norma, como acontece com muitos padrões japoneses, alinhar-se estreitamente com padrões internacionais como ASME B36.10M, frequentemente utilizando o **Tamanho Nominal do Tubo (NPS)** sistema (Designação AB) e **Números de agendamento** (Sch 10, Sch 20, Sch 40, Sch 80, etc.) para definir a espessura da parede do tubo em relação ao seu diâmetro. A tabela a seguir fornece uma referência para algumas dimensões comuns e como a espessura da parede é determinada pelo número de programação para os graus STPG.

Mesa 3: Dimensões nominais comuns de tubos e espessura de parede (APENAS G3454 – Dados representativos)
Tamanho nominal (UM) Tamanho nominal (B) DE (milímetros) Sch 40 Grossura (milímetros) Sch 80 Grossura (milímetros)
15 1/2″ 21.7 2.8 3.7
25 1″ 34.0 3.4 4.5
50 2″ 60.5 3.9 5.5
100 4″ 114.3 6.0 8.6
150 6″ 165.2 7.1 11.0
200 8″ 216.3 8.2 12.7

*Observação: As espessuras das paredes são nominais e podem variar dentro das tolerâncias especificadas definidas pela norma. Os números Sch definem a espessura da parede, enquanto as classes STPG definem a resistência do material.

Além disso, as tolerâncias nas dimensões são extremamente rigorosas para garantir a integridade da pressão:

  • Retidão: O desvio máximo de uma linha reta é rigorosamente controlado, muitas vezes obrigado a não ser mais do que 1 mm por 1000 mm de comprimento.
  • Tolerância de espessura de parede: Para tubos sem costura acabados a quente, o desvio é normalmente $+15\%$ para $-12.5\%$ da espessura nominal da parede para espessuras maiores, refletindo os desafios da laminação a quente. Para tubos acabados a frio e ERW, as tolerâncias são muito mais restritas, às vezes especificado tão baixo quanto $pm 10\%$ ou valores absolutos fixos para dimensões muito pequenas, refletindo a precisão desses processos.

Testes rigorosos e protocolos de garantia de qualidade

A designação de um tubo em conformidade com JIS G3454 não tem sentido sem o apoio de testes abrangentes e protocolos de garantia de qualidade. Esses testes servem como verificação final de que o material atende aos padrões prescritos de segurança e desempenho.

  1. Teste de tração: Confirma os mínimos garantidos para resistência à tração, força de rendimento, e alongamento.
  2. Teste de achatamento (para tubo sem costura): A seção do tubo é achatada até que a distância entre as placas atinja um valor especificado. O tubo deve suportar esta deformação sem apresentar fissuras ou falhas, demonstrando sua ductilidade.
  3. Teste de flexão (para tamanhos menores): Necessário para tubos 40A ou menores, o tubo é dobrado em um grande ângulo (por exemplo, $90^circ$) em torno de um mandril de raio especificado (por exemplo, 6 vezes o DO) para confirmar a ductilidade.
  4. Hidráulico (Hidrostático) Teste: Cada comprimento de tubo acabado deve ser submetido a um teste de pressão mínima. Este teste tensiona fisicamente o tubo para garantir a estanqueidade à pressão e a integridade estrutural ao longo de todo o processo.. A pressão de teste é proporcional à resistência ao escoamento do material e às dimensões do tubo.
  5. Testes Não Destrutivos (END): Para tubos ERW, métodos complementares de END, como exame ultrassônico ($\texto{Z3}$) ou exame de corrente parasita ($\texto{Z4}$) são frequentemente designados pelo comprador para verificar a integridade da costura de solda longitudinal.

Aplicação e Contexto Global

A seleção entre **STPG 370** e **STPG 410** depende principalmente da pressão e temperatura de projeto do sistema. **STPG 410** é a escolha preferida para coletores principais de vapor e linhas de água de alimentação de alta pressão devido à sua resistência superior, permitindo mais fino, paredes mais eficientes. **STPG 370**, com sua excelente soldabilidade e ductilidade ligeiramente superior, atende efetivamente em linhas auxiliares de baixa a média pressão e sistemas complexos que exigem fabricação extensiva.

No mercado global, As classes JIS G3454 STPG são funcionalmente comparáveis ​​a vários padrões internacionais, mais notavelmente as especificações **ASTM A106/ASME SA-106** para tubos de aço carbono sem costura para serviço em alta temperatura:

  • STPG 370: Está intimamente relacionado com **ASTM A53 Grau B** e **ASTM A106 Grau A**, embora STPG 370 frequentemente exibe resistência ao escoamento mínimo ligeiramente maior do que A106 Grau A.
  • STPG 410: Seu perfil de força (Mínimo. Tração $410 \texto{ MPa}$, Mínimo. Colheita $245 \texto{ MPa}$) é diretamente competitivo com **ASTM A106 Grau B** (Mínimo. Tração $415 \texto{ MPa}$, Mínimo. Colheita $240 \texto{ MPa}$), confirmando seu status como premium, material reconhecido internacionalmente para tubulações de pressão de alta integridade de até US$ 350^circtext{C}$.

Os rigorosos requisitos do JIS G3454 garantem que os tubos de caldeira de aço carbono STPG não sejam apenas mercadorias, mas componentes altamente projetados que formam o ponto crítico, espinha dorsal confiável de sistemas térmicos em todo o mundo. Sua composição química equilibrada e desempenho mecânico garantido sob condições extremas fazem deles um material indispensável na geração de energia e na indústria pesada.

Postagens relacionadas
Tubos e tubos de aço da caldeira

Aplicação em tubulação de caldeira: 1 Tubos de caldeiras em geral são usados ​​principalmente para fabricar tubos de parede resfriados a água, canos de água fervente, tubos de vapor superaquecidos, tubos de vapor superaquecidos para caldeiras de locomotivas, cachimbos grandes e pequenos e cachimbos de tijolo em arco. 2 tubos de caldeira de alta pressão são usados ​​principalmente para fabricar tubos de superaquecedor, tubos de reaquecedor, dutos de ar, tubos de vapor principais, etc.. para caldeiras de alta pressão e ultra alta pressão.

Tubos de aço para caldeiras

Tubos de aço para caldeiras são componentes críticos em muitas aplicações industriais, fornecendo desempenho confiável sob condições extremas. Ao aderir a rígidos padrões de qualidade e compreender as principais propriedades e classificações desses tubos, as indústrias podem garantir a operação segura e eficiente de seus sistemas térmicos.

Tubo sem costura de aço carbono ASTM A210 GR A1

ASTM A210 GRADE A1 Tubo sem costura deve ser fabricado pelo processo de soldagem ou de soldagem com a adição de metal de enchimento na operação de soldagem. O ASTM ASTM ASTM oferecido tubos sem costura CS são utilizados em diversos tamanhos e outras especificações relacionadas, para atender aos requisitos de nossos clientes de destaque.ASME SA 210 Tubos de caldeira G.A1, projetados de acordo para definir os padrões do setor. Conforme as necessidades e requisitos de nossos clientes, Estamos envolvidos no fornecimento de ASME SA 210 Gr. Tubos de caldeira A1. Compre os tubos da caldeira ASTM A210 Grade A1 a um custo razoável de nós.

ASTM B861 TIPANIO DE LELO DE TITANIO

ASTM B861 TIPANIUM LELOLO PIPES SEMPLESSE SÃO UMA ESCOLHA PREMIUM PARA APLICAÇÕES DE BILIDADE, oferecendo resistência inigualável à corrosão, resistência a altas temperaturas, e propriedades leves. Compacente com ASTM B861 e ASME SB861, esses canos em notas como 2, 7, e 12 atenda às demandas de geração de energia, processamento químico, e sistemas de caldeira marítima. Apesar dos custos mais altos, Sua durabilidade e desempenho justificam seu uso em aplicativos críticos. Para dados técnicos ou citações, Entre em contato com fornecedores como Abtersteel.com

ASME SB338 Grade 7 Tubo de trocador de calor de titânio

ASME SB338 Grade 7 tubos de trocador de calor de titânio, ligado com paládio, oferecer resistência inigualável à corrosão, Eficiência térmica, e propriedades leves para aplicações exigentes. Compacente com ASME SB338 e ASTM B338, Esses tubos se destacam no processamento químico, geração de energia, dessalinização, e trocadores de calor marinho. Sua durabilidade, aprimorado por paládio, justifica seu uso, apesar dos custos mais altos. Para dados técnicos ou citações, Entre em contato com fornecedores como Abtersteel.com

A213 TP321 Tubo de caldeira em aço inoxidável em aplicações de superaquecedor

Coda: Tubos TP321, Égide liga -se ligada ao incêndio, Orquestrar superaquecimento - composições coesas, Dimensões Deft, forças firmes - emissários eternos da brasa da energia.

Cachimbo & Acessórios

Abter PIPELINE

Para consultas de vendas ou preços de produtos Abter, Entre em contato com uma de nossas vendas.
(+86) 317 3736333

www.pipeun.com

[email protected]

Locais

Estamos em toda parte




Entre em contato

Acompanhe nossa atividade

Certificações

Gráficos de desempenho do produto Line Pipe

Distribuidores e Agentes Autorizados



Postagens relacionadas
Tubos e tubos de aço da caldeira

Aplicação em tubulação de caldeira: 1 Tubos de caldeiras em geral são usados ​​principalmente para fabricar tubos de parede resfriados a água, canos de água fervente, tubos de vapor superaquecidos, tubos de vapor superaquecidos para caldeiras de locomotivas, cachimbos grandes e pequenos e cachimbos de tijolo em arco. 2 tubos de caldeira de alta pressão são usados ​​principalmente para fabricar tubos de superaquecedor, tubos de reaquecedor, dutos de ar, tubos de vapor principais, etc.. para caldeiras de alta pressão e ultra alta pressão.

Tubos de aço para caldeiras

Tubos de aço para caldeiras são componentes críticos em muitas aplicações industriais, fornecendo desempenho confiável sob condições extremas. Ao aderir a rígidos padrões de qualidade e compreender as principais propriedades e classificações desses tubos, as indústrias podem garantir a operação segura e eficiente de seus sistemas térmicos.

Tubo sem costura de aço carbono ASTM A210 GR A1

ASTM A210 GRADE A1 Tubo sem costura deve ser fabricado pelo processo de soldagem ou de soldagem com a adição de metal de enchimento na operação de soldagem. O ASTM ASTM ASTM oferecido tubos sem costura CS são utilizados em diversos tamanhos e outras especificações relacionadas, para atender aos requisitos de nossos clientes de destaque.ASME SA 210 Tubos de caldeira G.A1, projetados de acordo para definir os padrões do setor. Conforme as necessidades e requisitos de nossos clientes, Estamos envolvidos no fornecimento de ASME SA 210 Gr. Tubos de caldeira A1. Compre os tubos da caldeira ASTM A210 Grade A1 a um custo razoável de nós.

ASTM B861 TIPANIO DE LELO DE TITANIO

ASTM B861 TIPANIUM LELOLO PIPES SEMPLESSE SÃO UMA ESCOLHA PREMIUM PARA APLICAÇÕES DE BILIDADE, oferecendo resistência inigualável à corrosão, resistência a altas temperaturas, e propriedades leves. Compacente com ASTM B861 e ASME SB861, esses canos em notas como 2, 7, e 12 atenda às demandas de geração de energia, processamento químico, e sistemas de caldeira marítima. Apesar dos custos mais altos, Sua durabilidade e desempenho justificam seu uso em aplicativos críticos. Para dados técnicos ou citações, Entre em contato com fornecedores como Abtersteel.com

ASME SB338 Grade 7 Tubo de trocador de calor de titânio

ASME SB338 Grade 7 tubos de trocador de calor de titânio, ligado com paládio, oferecer resistência inigualável à corrosão, Eficiência térmica, e propriedades leves para aplicações exigentes. Compacente com ASME SB338 e ASTM B338, Esses tubos se destacam no processamento químico, geração de energia, dessalinização, e trocadores de calor marinho. Sua durabilidade, aprimorado por paládio, justifica seu uso, apesar dos custos mais altos. Para dados técnicos ou citações, Entre em contato com fornecedores como Abtersteel.com

A213 TP321 Tubo de caldeira em aço inoxidável em aplicações de superaquecedor

Coda: Tubos TP321, Égide liga -se ligada ao incêndio, Orquestrar superaquecimento - composições coesas, Dimensões Deft, forças firmes - emissários eternos da brasa da energia.